Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(29): e2111233119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858311

RESUMO

Organisms often cooperate through the production of freely available public goods. This can greatly benefit the group but is vulnerable to the "tragedy of the commons" if individuals lack the motivation to make the necessary investment into public goods production. Relatedness to groupmates can motivate individual investment because group success ultimately benefits their genes' own self-interests. However, systems often lack mechanisms that can reliably ensure that relatedness is high enough to promote cooperation. Consequently, groups face a persistent threat from the tragedy unless they have a mechanism to enforce investment when relatedness fails to provide adequate motivation. To understand the real threat posed by the tragedy and whether groups can avert its impact, we determine how the social amoeba Dictyostelium discoideum responds as relatedness decreases to levels that should induce the tragedy. We find that, while investment in public goods declines as overall within-group relatedness declines, groups avert the expected catastrophic collapse of the commons by continuing to invest, even when relatedness should be too low to incentivize any contribution. We show that this is due to a developmental buffering system that generates enforcement because insufficient cooperation perturbs the balance of a negative feedback system controlling multicellular development. This developmental constraint enforces investment under the conditions expected to be most tragic, allowing groups to avert a collapse in cooperation. These results help explain how mechanisms that suppress selfishness and enforce cooperation can arise inadvertently as a by-product of constraints imposed by selection on different traits.


Assuntos
Altruísmo , Dictyostelium , Evolução Biológica , Comportamento Cooperativo , Humanos , Motivação
2.
Nat Commun ; 13(1): 319, 2022 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-35031602

RESUMO

Natural selection should favour generalist predators that outperform specialists across all prey types. Two genetic solutions could explain why intraspecific variation in predatory performance is, nonetheless, widespread: mutations beneficial on one prey type are costly on another (antagonistic pleiotropy), or mutational effects are prey-specific, which weakens selection, allowing variation to persist (relaxed selection). To understand the relative importance of these alternatives, we characterised natural variation in predatory performance in the microbial predator Dictyostelium discoideum. We found widespread nontransitive differences among strains in predatory success across different bacterial prey, which can facilitate stain coexistence in multi-prey environments. To understand the genetic basis, we developed methods for high throughput experimental evolution on different prey (REMI-seq). Most mutations (~77%) had prey-specific effects, with very few (~4%) showing antagonistic pleiotropy. This highlights the potential for prey-specific effects to dilute selection, which would inhibit the purging of variation and prevent the emergence of an optimal generalist predator.


Assuntos
Dictyostelium/genética , Comportamento Alimentar , Bactérias/metabolismo , Evolução Biológica , Dictyostelium/crescimento & desenvolvimento , Dictyostelium/fisiologia , Cadeia Alimentar , Mutação
3.
BMC Biol ; 19(1): 172, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34429112

RESUMO

BACKGROUND: Genomes can be sequenced with relative ease, but ascribing gene function remains a major challenge. Genetically tractable model systems are crucial to meet this challenge. One powerful model is the social amoeba Dictyostelium discoideum, a eukaryotic microbe widely used to study diverse questions in the cell, developmental and evolutionary biology. RESULTS: We describe REMI-seq, an adaptation of Tn-seq, which allows high throughput, en masse, and quantitative identification of the genomic site of insertion of a drug resistance marker after restriction enzyme-mediated integration. We use REMI-seq to develop tools which greatly enhance the efficiency with which the sequence, transcriptome or proteome variation can be linked to phenotype in D. discoideum. These comprise (1) a near genome-wide resource of individual mutants and (2) a defined pool of 'barcoded' mutants to allow large-scale parallel phenotypic analyses. These resources are freely available and easily accessible through the REMI-seq website that also provides comprehensive guidance and pipelines for data analysis. We demonstrate that integrating these resources allows novel regulators of cell migration, phagocytosis and macropinocytosis to be rapidly identified. CONCLUSIONS: We present methods and resources, generated using REMI-seq, for high throughput gene function analysis in a key model system.


Assuntos
Dictyostelium , Dictyostelium/genética , Genoma , Genômica , Tecnologia
4.
Br J Pharmacol ; 177(4): 912-928, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31693171

RESUMO

BACKGROUND AND PURPOSE: Epidiolex™, a form of highly purified cannabidiol (CBD) derived from Cannabis plants, has demonstrated seizure control activity in patients with Dravet syndrome, without a fully elucidated mechanism of action. We have employed an unbiased approach to investigate this mechanism at a cellular level. EXPERIMENTAL APPROACH: We use a tractable biomedical model organism, Dictyostelium, to identify a protein controlling the effect of CBD and characterize this mechanism. We then translate these results to a Dravet syndrome mouse model and an acute in vitro seizure model. KEY RESULTS: CBD activity is partially dependent upon the mitochondrial glycine cleavage system component, GcvH1 in Dictyostelium, orthologous to the human glycine cleavage system component H protein, which is functionally linked to folate one-carbon metabolism (FOCM). Analysis of FOCM components identified a mechanism for CBD in directly inhibiting methionine synthesis. Analysis of brain tissue from a Dravet syndrome mouse model also showed drastically altered levels of one-carbon components including methionine, and an in vitro rat seizure model showed an elevated level of methionine that is attenuated following CBD treatment. CONCLUSIONS AND IMPLICATIONS: Our results suggest a novel mechanism for CBD in the regulating methionine levels and identify altered one-carbon metabolism in Dravet syndrome and seizure activity.


Assuntos
Canabidiol , Dictyostelium , Epilepsia , Síndrome de Lennox-Gastaut , Animais , Anticonvulsivantes/uso terapêutico , Canabidiol/uso terapêutico , Ciclo do Carbono , Epilepsia/tratamento farmacológico , Humanos , Síndrome de Lennox-Gastaut/tratamento farmacológico , Metionina/uso terapêutico , Ratos
5.
Nat Commun ; 10(1): 3284, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337766

RESUMO

Conflict is thought to play a critical role in the evolution of social interactions by promoting diversity or driving accelerated evolution. However, despite our sophisticated understanding of how conflict shapes social traits, we have limited knowledge of how it impacts molecular evolution across the underlying social genes. Here we address this problem by analyzing the genome-wide impact of social interactions using genome sequences from 67 Dictyostelium discoideum strains. We find that social genes tend to exhibit enhanced polymorphism and accelerated evolution. However, these patterns are not consistent with conflict driven processes, but instead reflect relaxed purifying selection. This pattern is most likely explained by the conditional nature of social interactions, whereby selection on genes expressed only in social interactions is diluted by generations of inactivity. This dilution of selection by inactivity enhances the role of drift, leading to increased polymorphism and accelerated evolution, which we call the Red King process.


Assuntos
Dictyostelium/genética , Evolução Molecular , Interações Microbianas/genética , Dictyostelium/fisiologia
6.
Dev Cell ; 47(4): 494-508.e4, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30473004

RESUMO

Cell-cell heterogeneity can facilitate lineage choice during embryonic development because it primes cells to respond to differentiation cues. However, remarkably little is known about the origin of heterogeneity or whether intrinsic and extrinsic variation can be controlled to generate reproducible cell type proportioning seen in vivo. Here, we use experimentation and modeling in D. discoideum to demonstrate that population-level cell cycle heterogeneity can be optimized to generate robust cell fate proportioning. First, cell cycle position is quantitatively linked to responsiveness to differentiation-inducing signals. Second, intrinsic variation in cell cycle length ensures cells are randomly distributed throughout the cell cycle at the onset of multicellular development. Finally, extrinsic perturbation of optimal cell cycle heterogeneity is buffered by compensatory changes in global signal responsiveness. These studies thus illustrate key regulatory principles underlying cell-cell heterogeneity optimization and the generation of robust and reproducible fate choice in development.


Assuntos
Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Dictyostelium/metabolismo , Animais , Linhagem da Célula/fisiologia , Esporos Fúngicos/metabolismo
7.
Proc Natl Acad Sci U S A ; 115(21): E4823-E4832, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735672

RESUMO

Contributing to cooperation is typically costly, while its rewards are often available to all members of a social group. So why should individuals be willing to pay these costs, especially if they could cheat by exploiting the investments of others? Kin selection theory broadly predicts that individuals should invest more into cooperation if their relatedness to group members is high (assuming they can discriminate kin from nonkin). To better understand how relatedness affects cooperation, we derived the ?Collective Investment" game, which provides quantitative predictions for patterns of strategic investment depending on the level of relatedness. We then tested these predictions by experimentally manipulating relatedness (genotype frequencies) in mixed cooperative aggregations of the social amoeba Dictyostelium discoideum, which builds a stalk to facilitate spore dispersal. Measurements of stalk investment by natural strains correspond to the predicted patterns of relatedness-dependent strategic investment, wherein investment by a strain increases with its relatedness to the group. Furthermore, if overall group relatedness is relatively low (i.e., no strain is at high frequency in a group) strains face a scenario akin to the "Prisoner's Dilemma" and suffer from insufficient collective investment. We find that strains employ relatedness-dependent segregation to avoid these pernicious conditions. These findings demonstrate that simple organisms like D. discoideum are not restricted to being ?cheaters" or ?cooperators" but instead measure their relatedness to their group and strategically modulate their investment into cooperation accordingly. Consequently, all individuals will sometimes appear to cooperate and sometimes cheat due to the dynamics of strategic investing.


Assuntos
Evolução Biológica , Comportamento Cooperativo , Dictyostelium/fisiologia , Teoria dos Jogos , Modelos Biológicos , Esporos de Protozoários/fisiologia , Individualidade
8.
Dis Model Mech ; 11(1)2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29361519

RESUMO

Natural compounds often have complex molecular structures and unknown molecular targets. These characteristics make them difficult to analyse using a classical pharmacological approach. Curcumin, the main curcuminoid of turmeric, is a complex molecule possessing wide-ranging biological activities, cellular mechanisms and roles in potential therapeutic treatment, including Alzheimer's disease and cancer. Here, we investigate the physiological effects and molecular targets of curcumin in Dictyostelium discoideum We show that curcumin exerts acute effects on cell behaviour, reduces cell growth and slows multicellular development. We employed a range of structurally related compounds to show the distinct role of different structural groups in curcumin's effects on cell behaviour, growth and development, highlighting active moieties in cell function, and showing that these cellular effects are unrelated to the well-known antioxidant activity of curcumin. Molecular mechanisms underlying the effect of curcumin and one synthetic analogue (EF24) were then investigated to identify a curcumin-resistant mutant lacking the protein phosphatase 2A regulatory subunit (PsrA) and an EF24-resistant mutant lacking the presenilin 1 orthologue (PsenB). Using in silico docking analysis, we then showed that curcumin might function through direct binding to a key regulatory region of PsrA. These findings reveal novel cellular and molecular mechanisms for the function of curcumin and related compounds.


Assuntos
Curcumina/farmacologia , Dictyostelium/metabolismo , Presenilina-1/metabolismo , Proteína Fosfatase 2/metabolismo , Homologia de Sequência de Aminoácidos , Antioxidantes/farmacologia , Curcumina/análogos & derivados , Curcumina/química , Dictyostelium/efeitos dos fármacos , Dictyostelium/crescimento & desenvolvimento , Ligantes , Simulação de Acoplamento Molecular
9.
Nat Commun ; 8: 14171, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120827

RESUMO

Cheaters disrupt cooperation by reaping the benefits without paying their fair share of associated costs. Cheater impact can be diminished if cooperators display a tag ('greenbeard') and recognise and preferentially direct cooperation towards other tag carriers. Despite its popular appeal, the feasibility of such greenbeards has been questioned because the complex patterns of partner-specific cooperative behaviours seen in nature require greenbeards to come in different colours. Here we show that a locus ('Tgr') of a social amoeba represents a polychromatic greenbeard. Patterns of natural Tgr locus sequence polymorphisms predict partner-specific patterns of cooperation by underlying variation in partner-specific protein-protein binding strength and recognition specificity. Finally, Tgr locus polymorphisms increase fitness because they help avoid potential costs of cooperating with incompatible partners. These results suggest that a polychromatic greenbeard can provide a key mechanism for the evolutionary maintenance of cooperation.


Assuntos
Comunicação Celular/fisiologia , Dictyostelium/fisiologia , Loci Gênicos/fisiologia , Genoma de Protozoário/genética , Proteínas de Protozoários/genética , Quimerismo , Cor , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/metabolismo , Sequenciamento Completo do Genoma
10.
Evolution ; 66(3): 933-939, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22380453

RESUMO

Bacterial persistence describes a heterogeneous response to antibiotics in clonal populations of bacteria due to phenotypic variation within the population, with a small proportion of cells surviving treatment even at very high concentrations of drug. The aim of this study was to determine whether different natural isolates of Escherichia coli, selected at random from a collection representing the spectrum of genetic diversity in the species, generate different fractions of persister cells. Despite comparable minimum inhibitory concentrations (MICs) to the antibiotics between the different strains, highly significant variation was observed in persister fractions following exposure to ampicillin, streptomycinm, or norfloxacin. Survival following treatment with one drug did not, however, correlate with survival against another. Finally, using competition assays we quantify fitness benefits of persistence. These results show that different strains of E. coli vary markedly in their response to antibiotics despite comparable genetic susceptibility and indicate different mechanisms of evolved persistence to different antibiotics.


Assuntos
Antibacterianos , Evolução Biológica , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Variação Genética , Interações Microbianas , Testes de Sensibilidade Microbiana , Especificidade da Espécie
11.
BMC Res Notes ; 4: 561, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22195774

RESUMO

BACKGROUND: Lamivudine (3TC) is a potent inhibitor of both Hepatitis B virus (HBV) and Human Immunodeficiency Virus (HIV) replication and is part of first-line highly active antiretroviral therapy (HAART) in the Gambia. Unfortunately, the effectiveness of 3TC against HBV is limited by the emergence of resistant strains. AIM: The aim of this retrospective study was to characterise 3TC-resistant mutations in HBV from co-infected patients receiving HAART, by generating HBV polymerase sequence data and viral loads from HBV genotype E infected patients, both at initiation and during a course of 3TC therapy. METHOD: Samples from 21 HBV chronic carriers co-infected with HIV-1 (n = 18), HIV-2 (n = 2) and HIV-dual (n = 1) receiving HAART for a period of 6-52 months were analysed for the emergence of 3TC-resistance mutations. FINDINGS: Sixteen out of 21 HBV/HIV co-infected patients responded well to HAART treatment maintaining suppression of HBV viraemia to low (≤ 104 copies/mL) (n = 5) or undetectable levels (< 260 copies/ml) (n = 11). Out of the 5 non-responders, 3 had developed 3TC-resistant HBV strains showing mutations in the YMDD motif at position 204 of the RT domain of the HBV polymerase. One patient showed the M204V+ L180M+ V173L+ triple mutation associated with a vaccine escape phenotype, which could be of public health concern in a country with a national HBV vaccination programme. All except one patient was infected with HBV genotype E. CONCLUSIONS: Our findings confirm the risk of 3TC mutations in HAART patients following monotherapy. This is a novel study on 3TC resistance in HBV genotype E patients and encourage the use of tenofovir (in association with 3TC), which has not shown unequivocally documented HBV resistance to date, as part of first-line therapy in HIV/HBV co-infected patients in West Africa.HBV- hepatitis B infection; HIV- human immunodeficiency virus; HAART- antiretroviral therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...